当前位置:首页 » 题库考题 » 圆柱体积题库

圆柱体积题库

发布时间: 2021-02-27 02:11:59

小学数学总复习题库的答案 急需!!

1、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作( 907505000 ),读作( 九亿零七百五十万五千 ),改写成以万作单位的数( 90750.5万 ),省略万后面的尾数是(90750 )万。
2、把4.87的小数点向左移动三位,再向右移动两位后,这个数是(0.487 )。
3、9.5607是(4 )位小数,保留一位小数约是(9.6 ),保留两位小数约是(9.56 )。
4、最小奇数是(1 ),最小素数(2 ),最小合数(4 ),既是素数又是偶数的是(2 ),20以内最大的素数是(19 )。
5、把36分解质因数是(2×2×3×3 )。
6、因为a=2×3×7,b=2×3×3×5,那么a和b的最大公约数是(6 ),最小公倍数是(630 )。
7、如果x6 是假分数,x7 是真分数时,x=(6 )。
8、甲数扩大10倍等于乙数,甲、乙的和是22,则甲数是(2 )。
9、三个连续偶数的和是72,这三个偶数是(22 )、(26 )、(24 )。
10、x和y都是自然数,x÷y=3(y≠0),x和y的最大公约数是( ),最小公倍数是( )。
11、一个数,千位上是最小的质数,百位上是最小的自然数,个位上是最小的合数,百分位上是最大的数字,其余数位上的数字是0,这个数写作( ),读作( )。
12、三个连续奇数的和是129,其中最大的那个奇数是( ),将它分解质因数为( )。
13、两个数的最大公约数是1,最小公倍数是323,这两个数是( )和( ),或( )和( )。
14、用3、4或7去除都余2的数中,其中最小的是( )。
15、分数的单位是18 的最大真分数是( ),它至少再添上( )个这样的分数单位就成了假分数。
16、0.045里面有45个( )。
17、把一根5米长的铁丝平均分成8段,每段的长度是这根铁丝的( ),每段长( )。
18、分数单位是111 的最大真分数和最小假分数的和是( )。
19、a与b是互质数,它们的最大公约数是( ),[a、b]=( )。
20、小红有a枝铅笔,每枝铅笔0.2元,那么a枝铅笔共花( )元。
21、甲仓存粮的34 和乙仓存粮的23 相等,甲仓:乙仓=( ):( )。已知两仓共存粮360吨,甲仓存粮( )吨,乙仓存粮( )吨。
22、如果7x=8y,那么x:y=(8 ):( 7)。
23、大圆的半径是8厘米,小圆的直径是6厘米,则大圆与小圆的周长比是(8:3 ),小圆与大圆的面积比是(64:9 )。
24、把5克盐放入50克水中,盐和盐水的比是(1:11 )。
25、甲、乙二人各有若干元,若甲拿出他所有钱的20%给乙,则两人所有的钱正好相等,原来甲、乙二人所有钱的最简整数比是( )。
26、如果x÷30=0.3,那么2x+1=(19 );有三个连续偶数,中间的一个是m,那么最小的偶数是( )。
27、采用24时记时法,下午3时就是(15 )时,夜里11时就是(23 )时,夜里12时是(24 )时,也就是第二天的(0 )时。
28、某商店每天9:00-18:00营业,全天营业(9 )小时。
29、15米40厘米=(15.4 )米=(1540 )厘米 6400毫升=(6.4 )升=(6.4 )立方分米
5.4平方千米=(540 )公顷=(5400000 )平方米 3小时45分=(3.75 )小时
834 立方米=(834000 )立方分米 1立方米50立方分米=(1.05 )立方米
3吨500千克=(3500 )千克 1.5升=(1500 )毫升=(1500 )立方厘米
3.25千米=(3)千米(250)米 0.65米=(6)分米(5 )厘米
30、一个圆柱的体积是60立方厘米,与它等底等高的圆锥体的体积是( 20)立方厘米。

❷ 需要竖式计算题75道

.5×8= 3.6×0.4= 39.68×0= 47.6×1=
4÷.5= 12÷0.06= 12÷1.2= 3÷30=
0.15×7= 3.2×6+3.2×4= 2.5×4×0.36=
0.2+0.8×0.5= 6.03×1000= 10×0.6= 6.45×0.01=
0.1×0.1= 0.24×0.5= 5.4+3.6= 1.25-0.25=
10.2×4.5= 2.5×6= 9×0.25= 0.125×4=
1.25×8×0.5= 16×0.01= 1.78÷0.3= 0.27÷0.003=
0.01÷0.1= 1.8×20= x-0.4x= 5d-2d=
3.6÷0.4= 0.6×0.8= 2.4×3= 0.12×0.7=
4÷5= 1.6÷0.5= 0.2÷0.05= 2.5×2.3×4=
1.5÷1.5+1.5= 3.6-1.2÷2.4= 4.7×6+4×4.7=
0.5×4÷0.5×4= 38.5×0×0.38= 0.6×0.8= 3×0.9=
2.5×0.4= 3.6×0.4 12.5×8= 50×0.04= 80×0.3= 1.1×9

二、用竖式计算
8.08-2.68= 5.546+29.38= 17.04×0.26 = 8.35×3.5=

三、竖式计算(得数保留一位小数)
0.43×0.29≈ 52.6×0.23≈ 4.58×0.37≈

❸ 制造一个容积为V的圆柱体油桶,问如何设计底面半径和高度可使用料最省用高数方法解题。

假设油桶底面半径为r,高为h

V=PI*r方h
推出 h=V/PI*r方
油桶表面积S=底面+侧面=PI*r方+2PI*r*h
S=PI*r方+2PI*r*V/PI*r方
现在的问题变成 当 r=? S取得最小值
dS/dr=你自己求=0
r=?
h= V/PI*r方=?
end

❹ 能帮我出五道小学四年级的数学题吗

1.王明看一本215的故事书,每天看18页,看了X天,还剩( )页没看,如果X=7,那么还剩( )页
2.874-(457-126)
3.姐妹专二人同时从家属里1去学校,路程全长800米。妹妹步行每分钟50米,姐姐骑自行车每分钟行150米,姐姐到达学校后立刻返回,途中与妹妹相遇,这时妹妹走了几分钟?

4、在8分之7、9分之5、12分之13、47分之23、15分之8、12分之5、18分之17中,最接近2分之1的是( );最接近1的是( )。

5、找规律:
4分之1,9分之4,16分之9,25分之16,( )。

❺ 请给我出一些小学应用题,最好有答案。

小学数学总复习经典好题解析

解答题
1、甲、乙两个修路队同时合修一条米的公路,用25天。完工时乙队比甲队少修125米,乙队平均每天修35米,甲队平均每天修多少米?
解析1:
用(全长米数-乙队修的总米数)÷25=甲每天修的米数。题中的125米为多余条件。
列算式:(1875-35×25)÷25=40(米)
解析2:
用乙队平均每天修的米数+乙队比甲队每天少修的米数=甲队每天修的米数,题中的已知全长1875米为多余条件。
列算式:35+125÷25=40(米)

2、快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?
解析1:
从已知条件可知,快车的速度是1/8,慢车的速度是1/12,先求出相遇时间,再求相遇的快车比慢车多行的占全长的几分之几,最后与相对的量相除,得到全程长度。
列式:
1÷(1/8+1/12)=24/5(小时)
(1/8-1/12)×24/5=1/5
180÷1/5=900(千米)
解析2:
也可以用“按比分配”的方法解
1/8:1/12=3:2
3+2=5
180÷(3/5-2/5)=900(千米)

3、电影门票20元一张,降价后观众增加一倍,收入增加五分之一,那么一张门票降价多少元?
解析:
初看此题似乎缺少观众人数这个条件,通过分析发现,观众人数其实与答案没有关系。因为降价前后观众人数存在倍数关系,收入也存在倍数关系,因此可假设一个观众人数。
假设观众人数为100人,
收入为20×100=2000(元)
降价后观众有100×2=200(人)
收入为2000×(1+1/5)=2400(元)
降价后每张票的价是2400÷200=12(元)
每张票降价是 20-12=8(元)

4、甲、乙两列火车同时从A、B两城相对开出,行了3.2小时后,两列还相距全程的5/8,
两车还需要几小时才能相遇?
解析1:
题中只有两个数据,可以先求出行完全程所需要的时间,再求还需要的时间。
3.2÷(1-5/8)×5/8=16/3
也就是 五又三分之一时
解析2:
用工程问题的思路来解答
1÷[(1-5/8)÷3.2]-3.2

5、加工一批零件,甲独做30小时完成,乙独做20小时完成,现在两人同时加工,完成任务时,乙给甲87个,两人零件个数就相等,这批零件共多少个?
解析1:
完成任务时乙给甲87个零件,两人的零件个数相等,说明乙比甲多(87×2)个,首先求乙、甲几小时相差的占总数的几分之几。
乙、甲做的时间1÷(1/30+1/20)=12(时)
零件的总个数:
87×2÷[(1/20-1/30)×12]=870(个)
解析2:
完成任务时乙给甲87个零件,两个人的零件个数相等,即各占1/2,说明乙做的个数比总数的一半少87个。
列式:
1÷(1/30+1/20)=12(时)
87÷(1/2-1/30×12)=870(个)

6、修一条路3天修完。第一天修全长的37%,第二天和第三天修的米数的比是4:5,第二天修了64米,这条路全长多少米?
解析1:
根据已知第二天修64米,占第一天修了以后剩下部分的4份,1份是64÷4=16(米)
剩下的部分是4+5=9份
所以剩下部分是16×(4+5)=144(米)
而144米占全长的(1-37%)。
列式:
64÷4×(4+5)÷(1-37%)=1600/7(米)
也就是二百二十八又七分之四米
解析2:
把题中的比转化为倍数,第二天修的米数占剩下的4/9
列式:
64÷4/9÷(1-37%)

7、红星鞋厂生产一批儿童鞋准备装箱。如果每箱装70双,5箱装不满,如果每箱装44双,7箱又装不完,最后决定每箱装A双,这是恰好装满A箱而没有剩余,这批儿童鞋共有多少双?
解析:
先估计他们的取值范围,总数一定小于350双,因为每箱装70双,5箱装不满,又一定大于308双,因为每箱装44双,7箱又装不完。
列式:
70×5=350(双)
44×7=308(双)
A×A也就是A的平方
308<A×A<350
什么数的平方在308~350之间
18的平方等于324
这批鞋共有324双。

8、有两桶油,第一桶用去1/4后,余下的与第二桶的质量比是3:5,第一桶原来有油18千克,第二桶原来有油多少千克?
解析:
画图理解题意,
方法一:
分数解法
18×(1-1/4)×5/3=22.5
方法二:
归一解法
18×(1-1/4)÷3×5=22.5
方法三:
倍比解法
18×(1-1/4)×(5÷3)=22.5

9、客车从甲地,货车从乙地同时相对开出。一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?
解析:
我们把客车、货车相对开出,转个方向看做客车、货车是同方向开出的,画线段图理解
(54+90)的和,正好是(7/8-1/2)的差相对应的。
列式:
(54+90)÷(7/8-1/2)=384(千米)

10、甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。甲车出发到相遇用了多少小时?
画线段图理解,
解析1:
用比的思路解答
甲与乙的速度比
7/11:4:11=7:4
甲的速度是40×7/4=70(千米)
154÷70=2.2(时)
解析2:
用份数思路解答
从图中可以看出相遇后乙又走了7份
每份是154÷7=22(千米)
相遇前:22×4=88(千米)
88÷40=2.2(时)

11、生产一批零件,甲每小时可以生产70个,乙单独做要10小时完成,现在由甲、乙两个人同时合做完成,甲、乙生产零件数量的比是4:3,甲一共生产理解多少个?
解析1:
要想求一共生产多少个零件,就应知道甲的工效和工作时间,由于是甲、乙合做完成,所乙用的时间与甲相等,乙的工作总量是3/3+4,乙的工效是1/10
甲的工作时间
3/7+1/10=30/7(时)
70×30/7=300(个)
解析2:
先求一份的工作效率占总量的
1/10÷3=1/30
甲占总量的1/30×4=2/15
甲、乙工作总量70÷2/15=525(个)
甲共做525×4/3+4=300(个)

12、一个商店以每双6.5双的价格购进一批布鞋,以每双8.7元的价格售出,当卖出这批布鞋的3/4时,不仅收回原来的成本,而且还盈利20元,购进这批布鞋是多少双?
解析1:
从每双鞋的价格中取出3/4,在扣除每双的成本,
得出每双盈利8.7×3/4-6.5=1/40(元)
20÷1/40=800(双)
解析2:
用假设法
假设买回100双鞋
成本:6.5×100=650(元)
100×3/4=75(双)
8.7×75=652.5(元)
盈利:652.5-650-2.5(元)
100×(20÷2.5)=800(双)

13、甲、乙两个仓库各有一批大米,已知甲仓库的大米比乙仓库多18吨,若乙仓库给甲仓库6吨,这时乙仓库的大米是甲仓库的4/7。甲仓库原有大米多少吨?
解析:
画线段图分析
乙仓库给甲仓库6吨后,乙仓库的大米是甲仓库的4/7,说明现在的大米吨数是单位“1”,当乙仓库给甲仓库6吨后,甲仓库本身又多出一个6吨,这时甲仓库的大米比乙仓库除了多了一个18吨还多出了两个6吨,即:18+6×2=30吨
乙仓库是甲仓库的4/7,
甲比乙多了(1-4/7)=3/7
30吨对应3/7,
列式:
甲,(18+6×2)÷(1-4/7)=70(吨)
原来甲,70-6=64(吨)

14、纺织厂一车间有男工120人,男工人数是女工的5/6,已知一车间人数占全长人数的25%,这个长有多少人?
解析1:
男工120人是女工的5/6,女工是单位“1”,先求出女工人数,再求出全厂人数,
(120÷5/6+120)÷25%=1056(人)
解析2:
如果以男工人数作为单位“1”,男工人数是女工的5/6,那么女工人数是男工的6/5,
列式:120×(1+6/5)÷25%=1056(人)

15、客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?
解析:
这道题首先求两地间的距离是多少千米,我们从相遇时客车、货车的路程差去找相应的分率,可以把全程看成是单位“1”这样就把客车、货车相遇时间求出,
即:1÷(1/10+1/15)=6(时)
相遇时客车走了全程的6/10,货车走了全程的6/15,客车、货车相差全程的6/10-6/15=1/5,90千米对应的分率就是1/5,
列式:
1÷(1/10+1/15)=6(时)
90÷(6/10-6/15)=450(千米)
客车行的:450÷10×6=270(千米)
货车行的:450÷15×6=180(千米)

16、客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?
解析1:
画线段图分析
从货车速度是客车的4/5这一条件可知客车的速度快,而且客车已过中点,并比中点处多了6千米,根据货车速度是客车的4/5,可以得出货车的路程也是客车的4/5,(在时间相同的情况下,速度比就等于路程比)把客车行的路程看做单位“1”,这时客车所行路程包含一个4/5,与2个6千米。客车所行的路程是,
(6×2)÷(1-4/5)=60(千米)
全程是:60÷(1+4/5)=108(千米)
解析2:
因为相遇时,货车所行路程是客车路程的4/5,相当于全程的4/9,客车行了全程的5/9,
列式:
(6×2)÷(5/9-4/9)=108(千米)

17、甲、乙、丙三种读物的本数比是7:9:12,已知甲、乙两种读物的和减去它们的差是70本,三种读物各有多少本?
解析1:
根据已知量70本,找相对应的分率,
三种读物共有多少,
70÷[(7/28+9/28)-(9/28-7/28)]=140
甲:140×7/28=35(本)
乙:140×9/28=45(本)
丙:140×12/28=60(本)
解析2:
用份数去做,先求出一份数,
70÷[(7+9)-(9-7)]=5(本)
甲:5×7=35(本)
乙:5×9=45(本)
本:5×12=60(本)

18、把180本图书分给甲、乙、丙三个班,已知甲班比丙班少24本,丙班比乙班多12本,问甲、乙、丙三个班所分的书的比是多少?
解析:
画线段图分析
甲:(180-24-12)÷3=48(本)
乙:180÷3=60(本)
丙:(180+24+12)÷3=72(本)
甲:乙:丙=48:60:72=4:5:6

19、某校六年级共有学生90人,其中男生人数的4/7与女生人数的2/3共有56人,男、女生各有多少人?
解析1:
假设男、女生都有一个2/3,那么男、女生的2/3共有90×2/3=60(人),它比男生的4/7与女生的2/3多了4人,因为男生只占4/7比假设的2/3多,所以多的4人对应的分率是:(2/3-4/7)=2/21
男生人数:
(90×2/3-56)÷(2/3-4/7)=42(人)
女生人数:
90-42=48(人)
解析2:
假设男、女生都有一个4/7,即先求出女生人数,
(56-90×4/7)÷(2/3-4/7)=48(人)
男生:90-48=42(人)

20、银行定期存款一年,年利率是2.25%,到期交个人所得税20%。定期存款三年,年利率是2.7%,到期交个人所得税20%,买国库券定期三年,年利率是2.89%,不交个人所得税。妈妈有30000元在银行定期存三年,如果是你,这30000元怎么存,你到期后能比妈妈多取回多少元?
解析:
从年利率上看定期一年的肯定不合算,但是我们还是把三种存款方式都算一遍,
定期一年的利息:
30000×2.25%×3×(1-20%)=1620(元)
定期三年的利息:
30000×2.7%×3×(1-20%)=1944(元)
国库券的利息:
30000×2.89%×3=2601(元)
相差了2601-1944=657(元)

21、一个底面半径是6厘米的圆柱,沿着和底面平行的方向切下一段后,余下的圆柱体比原来圆柱体的表面积减少了188.4平方厘米,求切下的这一段体积是多少立方厘米?
解析:
表面积减少了188.4平方厘米,实际是侧面积减少了188.4平方厘米,要想求圆柱的体积就必须知道底面积是多少,高是多少,
高:188.4÷(6×2×3.14)=5(元)
体积:3.14×6×6×5=565.2(立方厘米)

22、一个边长为4厘米的正方体,分别在前后,左右、上下各面的中心位置挖去一个棱长为1厘米的正方体,做一个玩具,这个玩具的表面积是多少平方厘米?
解析:
当大正方形中心挖去一个棱长为1厘米的小正方体时,大正方体没有挖穿,因此,小正方体底部的面积抵消了表面损失的1平方厘米的面积,所以每挖一个小正方体只增加4个面的面积4平方厘米,六个面上的小正方体共增加面积4×6=24(平方厘米)
再加上原来大正方体的表面积就是这个玩具的表面积,
列式:
大正方体的表面积:
4×4×6=96(平方厘米)
六个小正方体增加表面积:
1×1×4×6=24(平方厘米)
玩具的表面积:
96+24=120(平方厘米)

23、一个平行四边形的周长是90厘米,相邻的两条边上的高分别是16厘米和14厘米,求这个平行四边形的面积是多少?
解析:
因为平行四边形的面积=底×高
假设14厘米的高所对应的底是BC,
假设16厘米的高对应的底是CD,
则有平行四边形的面积=BC×14,
平行四边形的面积=CD×16,
便有BC×14= CD×16
利用比例的基本性质:
BC/CD=16/14=8/7
也就是平行四边形的周长是90厘米对应的是(8+7)×2=30份
一份是90÷[(8+7)×2]=3(厘米)
面积是:3×8×14=336(平方厘米)

24、一个直角梯形,上底长是下底的4/7,如果上底增加7米,下底增加1米,梯形就变成了正方形,原梯形的面积是多少平方米?
解析:
要想求梯形的面积,必须知道梯形的上底、下底和高。这样必须通过图才能清晰的看到直角梯形是怎么演变成正方形的,这样才能求出梯形的上底、下底和高,
已知上底是下底的4/7,下底长是单位“1”,上底增加7米,下底增加1米,梯形变成了正方形,说明原来梯形的下底比上底多7-1=6米,下底比上底多1-4/7=3/7,这样可以求出下底的长是:
(7-1)÷(1-4/7)=14(米)
接下来求上底:14×4/7=8(米)
高是:14+1=15(米)
面积是:
(14+8)×15÷2=165(平方米)

25、有一个梯形,上底与下底长度的比是7:3,它的高是10厘米,如果上底减去12厘米,下底增加16厘米,则这个梯形就变成了一个长方形,求原来这个梯形的面积是多少平方厘米?
解析:
根据题意
上、下底相差12+16=28(厘米)
上、下底相差的份数是7-3=4份
求出每份是:28÷4=7(厘米)
上底是:7×7=49(厘米)
下底是:7×3=21(厘米)
面积是:
(49+21)×10÷2=350(平方厘米)

26、一个长方形和一个圆的周长相等,已知圆周长是31.4厘米,长方形的宽和长的比是1:4,长方形的面积比圆面积少多少平方厘米?
解析:
长方形的长与宽的和是:
31.4÷2=15.7(厘米)
长方形的宽:
15.7÷(1+4)=3.14(厘米)
长方形的长:
3.14×4=12.56(厘米)
圆的半径是:
31.4÷3.14÷2=5(厘米)
长方形的面积比圆面积少多少平方厘米,
3.14×5×5-12.56×3.14=39.0616(平方厘米)

27、在一个底面半径是30厘米的圆柱形储水桶里,水深有20厘米,当把一根长80厘米的圆柱体垂直插入直到桶底时,圆柱形储水桶里的水深达到35厘米,求这个圆柱体的体积是多少立方厘米?(得数保留整数)
解析:
通过水位的升高,求出增加的体积。
3.14×30×30×20=56520(原来水的体积)
3.14×30×30×35=98910(现在水的体积)
圆柱体的底面积:
(98910-56520)÷35=1211.14(平方厘米)
圆柱体的体积:
1211.14×80≈96891(立方厘米)

28、一个长方体的木块,长是20厘米,宽是15厘米,高是8厘米,把它锯成相等的4块,这4块小长方体的表面积之和是多少平方厘米?
解析:
第一种切法,
将长方体的长分成相等的4块,切3刀,增加6个面。
列式:
(20×15+20×8+15×8)×2+15×8×6=1880(平方厘米)
第二种切法,
将长方体的宽分成相等的4块,这时增加的面是 ,长×高×6
列式:
(20×15+20×8+15×8)×2+20×8×6=2120(平方厘米)
第三种切法,
将长方体沿着高分成相等的4块,这时增加的面是,长×宽×6
列式:
(20×15+20×8+15×8)×2+20×15×6=2960(平方厘米)
第四种切法,
将长方体沿长、高分成相等的4块,这时增加的面是,长×宽×2+宽×高×2
(20×15+20×8+15×8)×2+15×8×2+20×15×2=2000(平方厘米)
第五种切法,
将长方体沿长、宽分成相等的4块,这时增加的面是,长×高×2+宽×高×2
(20×15+20×8+15×8)×2+20×8×2+15×8×2=1720(平方厘米)
第六种切法,
将长方体沿高、宽分成相等的4块,这时增加的面是,长×宽×2+长×高×2
(20×15+20×8+15×8)×2+20×15×2+20×8×2=2080(平方厘米)

29、一个长方体的钢锭,底面周长20分米,长与宽的比是4:1,高比宽少40%,它正好可以铸成高为3分米的圆锥体,圆锥体的底面积是多少平方分米?
解析:
首先求出长方体的长和宽
长:20÷2×4/5=8(分米)
宽:20÷2×1/5=2(分米)
高:2×(1-40%)=6/5(分米)
圆锥体的底面积是:
8×2×6/5÷3×3=19.2(平方分米)

30、有两个长方形,一个的宽是5厘米,另一个的长是4厘米,它们的面积之和等于42平方厘米,如果不改变第一个长方体的长和第二个长方形的宽,把第一个长方形的宽扩大2倍,把第二个长方形的长增加1厘米,那么两个新的长方形的面积之和要比原来的大33平方厘米,求第一个长方形的长和第二个长方形的宽各是多少?(用方程解)
解析:
变化之后的两个新长方形的面积之和-原来的两个长方形面积之和=33平方厘米
解:设原来第一个长方形的长是X厘米,则第二个长方形的宽是(42-5X)÷4厘米
(5×2)X+(42-5X)÷4×(4+1)=33+42
X=6
宽:
(42-5X)÷4=(42-5×6)÷4=3

31、一块宽为16厘米的长方形铁皮,把它的四角分别剪去每边长4厘米的正方形,然后焊接成一个上面无盖的铁盒,如果这个盒子的体积是768立方厘米,求原来那块铁皮的面积是多少平方厘米?(用方程解)
解析:
因为四个角分别减少了4厘米,那么大铁盒的长应是(长-4×2),铁盒的宽应是(宽-4×2),高是4厘米。
解:设原来那块铁皮的长为X厘米
(X-4×2)×(16-4×2)×4=768
X=32
面积是:32×16=512(平方厘米)

32、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体的底面直径是20厘米,高是多少厘米?
解析:
长方体铁块体积+正方体铁块体积=熔铸成的圆柱体积
解:设圆柱的高是X厘米
3.13×(20÷2)×(20÷2)×X=9×7×3+5×5×5
X=1

33、教室里每个同学的桌椅占地需要宽0.8米,长1米,每行桌椅之间需要间隔0.4米,第一排距黑板2米,如果40人坐6行,教室的面积最少是多少平方米?
解析:
6行需有5个间隔,先分别求出教室的长和宽,有两种摆放方法,分别用0.8米,1米做长,从中选择。40人坐6行,每行要7人。
一种摆法:
长:0.8×6+0.4×5=6.8(米)
宽:1×7+2=9(米)
面积:9×6.8=61.2(平方米)
另一种摆法:
长:1×6+0.4×5=8(米)
宽:0.8×7+2=7.6(米)
面积:8×7.6=60.8(平方米)
因为需要面积最少的摆放方法,所以选择第二种摆法,合乎要求。

http://hi..com/ququpingping

❻ 有没有适合六年级做的数学题(难的)谢谢

太多了吧!
1,一批葡萄进仓库时重250千克,测量含水量为99%,过了一段时间,测的含水量为96%,这时葡萄的重量是多少千克
2,五年级进行大扫除,原计划派的同学到操场上除草,其余同学扫地,实际劳动时,又有2名同学参加除草,这样除草的人数是扫地人数的,原计划派几名同学除草
3,两层书共有112本,如果将第二层的搬到第一层,两层书的本数相等,第二层原有多少本书
4,光明小学原来男女生人数的比是7:5,后来又转来12名女生,这时,男女生人数的比是9:7,学校现在有女生多少人
5,有一根长5.6米的竹竿插入水池中,露出水面,其剩余的插在泥里.问水池深有多少米
6,农业公司从第一队调的人去地第二队,这时第二队的人正好是第一队的,已知第二队原有22人,第一队原有多少人
7,小明读一本书计划用20天,结果5天就读了全书的40%,按这样的速度,可提前多少天读完 (比例解答)
8,有一堆水果,苹果占45%,在放入16千克梨后,苹果就占25%,这堆水果中共有苹果多少千克
9,把一个正方体作成一个最大的圆柱体,已知圆柱体的体积是392.5立方厘米,求正方体的体积是多少立方厘米
10,实验学校派出60名选手参加"少儿ok赛",其中女选手占,正式比赛时,有几名女选手因故缺席,这样,就使女选手人数变为参赛选手总数的,正式参赛的女选手有多少人
11,一个圆柱的玻璃杯中盛有水,水深2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长为6厘米的立方体铁块后,水面没有淹没铁块,并且水未溢出,这时水深多少厘米
12,幼儿园购进一些书,科技书是图画书和故事书的,图画书是科技书和故事书的,故事书有15本,问科技书和图画书各有多少本
13,一项水利工程,甲乙两队合修30天完成,如果两队合修12天后,余下的由乙队独做再做24天完成,甲乙独做这项工程各需几天
14,工农小学四年级有甲乙两个班,甲班人数是乙班人数的,如果从乙班调3人到甲班,甲乙两班人数的比为4:5,甲乙两班原来各有多少人
15,一项水利工程,甲单独做要8天完成,乙单独做4天完成,甲乙合作,中间甲因病休息了1天,完成任务时,乙工作了几天
16,客车从甲地到乙地要行10小时,货车从乙地到甲地要行15小时,两车同时从两地相向而行,相遇时客车比货车多行80千米,求甲乙两地的距离
17,某班一次集会,请假人数是出席人数的,中途又有一人请假离开,这样一来,请假人数是出席人数的,这个班共有学生多少人
18,生产一批零件,师傅单独完成需要8小时,已知师徒工作效率的比是4:3,徒弟单独完成需要多少时间 (比例解答)
19,某个体户运来西红柿和茄子共385千克,西红柿卖掉,茄子卖掉后,剩下的两种菜的质量相等,求运来西红柿和茄子各多少千克
20,甲乙两袋米的重量比是3:10,如果乙给甲20千克,这是甲乙两袋米重量的比是7:6,求原来两袋米各重多少千克
21,甲乙两根木棒在水池中,两根木棒的长度和是190厘米,甲棒有露出水面,乙棒有露出睡眠,求水深是多少厘米
22,甲乙两车从东西两地同时相向而行,已知甲与乙的速度比是2:3,甲车走完全程许5小时,求两车开出后几小时相遇
23,生产一台铲车由原来的7小时减少了4.5小时,原来每天生产140台,现在每天生产多少台 (用正反比例解)
24,一项工作,甲独做需40天,乙独做需60天,现在两人合作来做,中间甲因病休息了几天,经过27天完成,甲休息了几天
25,读一本书,已读的和未读的比是3:4,如果再读50页,则已读的是未读的2倍,这本书共有多少页
26,有大小两个互相咬和的齿轮,大齿轮有48个齿,小齿轮有32个齿,如果大齿轮每分转100转,小齿轮20秒转多少转 (比例解答)
27,客车从甲地到乙地要行6小时,货车从乙地到甲地要行4小时,现在两车同时从甲乙两地出发,相对而行,结果在离中点18千米的地方相遇,相遇时货车行了多少千米
28,甲乙两仓库原有货物的重量的比是7:5,如果甲仓给乙仓26吨,这时甲仓是乙仓的,甲仓原来有多少吨货物
29,将一个半径是30厘米的圆形铁皮剪掉后,用剩下的部分卷成一个灯罩,求灯罩底面圆的半径是多少厘米
30,把一个高4分米的圆柱体的底面平均分成若干扇形后,把圆柱体切开,拼成一个与它等底等高的近似长方体,长方体的表面积比圆柱体的表面积增加120平方厘米,原来圆柱体的体积是多少
31,有一堆水果,苹果占45%,在放入16千克梨后,苹果就占25%,这堆水果中共有苹果多少千克
32,水果仓库运来含水量为90%的一种水果400千克,一周后再测,发现含水量降低为80%,现在这批水果的总重量是多少千克
33,甲乙两车分别从a, b两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的10%,当乙行到全程的时,甲车再行全程达到到达b地,求a, b两地相距多少千米
34,两堆煤的重量相等,从甲堆中取出2.5吨放入乙堆,这时甲乙两堆煤的重量比是3:5,求甲堆原有煤多少吨
35,学校新购进科技书和故事书若干本,科技书占总本数的,后来又购进80本科技书,这时,科技书占总本数的,学校原来共购进多少本书
36,甲走完东西两镇的距离需4小时,乙走完需6小时,如果甲由东镇,乙由西镇同时出发,相向而行,相遇时,甲比乙多行12千米,求东西两镇之间的距离
37,一项工程,甲乙合作8天完成,甲单独做12天后,由乙队单独做了6天,这时完成了整个工程,甲单独做这项工程需要多少天
38,学校美术兴趣小组与音乐兴趣小组的人数的比是5:4,中途又有7人参加美术兴趣小组,这时两组人数的比是8:5,原来两个兴趣小组各有多少人
39,师傅做一个零件用5分钟,徒弟做一个零件用9分钟,如果师徒合作168个,问两人各做多少个
40.一项工程甲乙两队合做12天完工,先由甲队单独做6天,余下的再由乙队接着做21天完成这项工程.如果全部由乙队做要多少天完成
41,一项工程甲单独做2O天完成,乙单独做3O天完成.甲乙合做3O天后,乙因事请假,从开工到完工共用14天完成,乙请假几天
42,客车从甲地到乙地要行1O小时,货车从乙地到甲地要行15小时,两车同时从两地相向而行,相遇时客车比货车多行8O千米.求甲乙两地距离
43,有27O个零件,甲独做5天完成,乙独做4天完成,把这些零件分给两人做,若要同时完工每人各应分多少个
44,农具厂生产每件农具的时间由原来的7分钟减少了4,5分钟,原来每天生产农具l4O件,现在每天生产农具多少件 (用正丶反比例解)
45,铺一车间用边长是4分米的方砖来铺,需16OO块;现改为用边长是5分米的方砖来铺,需多少块 (比例)
46,有大小两个互相咬合的齿轮,大齿轮有96个齿,小齿轮有16个齿;如果大齿轮每分转1OO转,小齿轮40秒钟转多少转 (比例)
47,有一池水,当水结成冰时,它的体积增加了l/11;当冰化成水的时候,体积减少了几分之几
48,一箱灯泡先拿去168只,又拿去余下的2/3,还剩总数的l/7,这箱灯泡共有多少只
49,六年级原来有1/5的人参加课外活动小组,后来又有2名同学参加课外活动小组,实际参加人数是剩余人的l/3,原来有多少名同学参加课外活动小组
50,甲乙两个训练队原有人数的比是4:3,从甲队调48人到乙队,现在甲乙两队人数的比是2:3,求甲队原有多少人
51,一个工厂第一.二.三季度生产的机器是全年75%,第三.四季度生产的机器是全年的45%,己知第三季度生产机器2OO台,这个工厂全年生产机器多少台
52,一项工作平均分给甲.乙两人来做,甲需5小时,乙需8小时完成,两人合做几小时能完成
53,甲乙两仓库共有存粮168O吨,从甲仓运走3/4,从乙仓运走2/3两仓余下的粮相等,甲乙两仓原有粮多少吨
54,某班-次考试的平均分数是7O分,其中3/4的人及格,他们的平均分数是8O分,求不及格的人的平均分数
55,某船顺水航行每小时行1O千米,逆水航行每小时行6千米,求该船往返的平均速度
56,甲乙和是52,甲.丙和是55,乙.丙和是57,求甲乙丙各是多少
57,时钟4点钟敲4下,6秒钟敲完;那么12点钟敲12下,几秒钟敲完 (植树问题)
58,某种商品按定价卖出可得利润96O元,若按定价的8O%出售,则亏损832元,商品的进货价是多少元 (利润问题)
59,浓度为lO%,重量8O克糖水中,加糖多少克就变为浓度为2O%的糖水 (浓度问题)
60,-个圆柱形储水桶里放人-段半径5厘米的圆钢,如果把它全部放进水中桶里的水就上升9厘米;如果把水中的圆钢露出水面8厘米,那么这时桶里的水就下降4厘米,求圆钢的体积
61,把圆柱的底面平均分成4O份,然后把它切开拼成-个近似的长方体.己知拼成长方体的底面周长是16.56厘米,高是8厘米,求圆柱的体积 (动手操作)
62,客船和货船分别从甲乙两港同时出发相对开出,客船从甲港开往乙港,每小时行3O千米;货船从乙港开往甲港,每小时行全程的1/36.当客船距甲港18O千米时,货船正好距乙港12O千米.甲乙两港相距多少千米
63,胜利小学有三个课外小组:科技小组有1O人,占三个小组总人数的2O%,文艺小组和体育小组比是3:2,体育小组有多少人
64,秋收结束,张大爷收获一堆稻谷.留下充足的口粮外,他准备把剩余的稻谷卖出.事先他了解了一下市场行情:稻谷每千克1 .50元,大米每千克 2.20 元,稻谷的出米率是70%. 如把稻谷加工成米后, 糠钱可抵加工费. 请你帮合计一下, 张大爷是卖稻谷合算 ,还是先把稻谷加工成米后然后再卖合算
65,在靖江市通达工程建设中,斜桥镇原计划用两个月的时间铺设一条长5000米,宽12米,厚25厘米的斜桥至大觉的水泥公路.前25天铺了40%,照这样的进度,这条公路能否如期完工 (用不同方法解题,多做一种加分)
66,小明有钱若干元.第一次用去2/5后,又得到24O元,第二次用去这时所有钱的l/3后,还剩72O元,请问第-次用去多少元 (倒推法)
67,甲乙两班共有学生l35人,甲班人数的4/7与乙班人数的4/5的和是92人.甲.乙两班各有学生多少人 (假设法)
68,操作题:有5个同样大的饼,要平均分给6个小明友,使每个小朋友各得2块,且每人拿法相同,应该怎样分 画出示意图.
69,王红今年9岁,吴江今年l9岁,几年前吴江的年龄是王红年龄的3倍 (年龄问题)
一项工程,甲队单独做要15天完成,乙队单独做要12天完成,两队合做若干天后,余下的由乙队独做要3天才能完成,问甲,乙两队合做了多少天

70,甲,乙两组共同生产一批零件,甲组单独做要5天完成,乙组单独做要3天完成.两组合作一天做了1600个,这批零件有多少个
71,有一只盛满水的长方体玻璃缸内,放有一段底面积是3.14平方分米的圆柱钢锭,当钢锭从玻璃缸内取出时,缸内的水面下降了0.5分米,已知这个长方体玻璃缸内的底面积是28.26平方分米.求这段圆柱体钢锭的长是多少分米
72,甲,乙两车分别从A,B两地同时相对开出,行驶4小时后,两车已相遇而过并又相距75千米,已知甲,乙两车每小时可行驶全程的7/24,A,B两地相距多少千米
73,某市出租车收费标准如下:
里 程
收费/元
5千米以下
10.00
5千米以上,每增加1千米
1.20
①出租车行驶的里程数为15千米时应收费( )元;
②现在有30元钱,可乘出租车的最大里程数为( )千米.
74,一长方体长,宽,高分别为3,2,1厘米,一只小虫从一顶点出发,沿棱爬行,如果要求不走重复路线,小虫回到出发时顶点时,所走最长路径是( )厘米
75,甲乙两个建筑队原有水泥的重量比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥的重量比是3:4.原来甲队有多少吨水泥
76,把一个直径是10厘米的圆柱体沿直径纵切开以后,表面积增加了200平方厘米,原来这个圆柱的体积是多少立方厘米
77,甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,要将容器乙中的水全部倒入甲容器,这时水深多少厘米
别说是30,就是100我也慢慢打字!

❼ 六年级数学题

3/7 × 49/9 - 4/3 8/9 × 15/36 + 1/27 12× 5/6 – 2/9 ×3
8× 5/4 + 1/4 6÷ 3/8 – 3/8 ÷6 4/7 × 5/9 + 3/7 × 5/9

5/2 -( 3/2 + 4/5 ) 7/8 + ( 1/8 + 1/9 ) 9 × 5/6 + 5/6

3/4 × 8/9 - 1/3 6 ×( 1/2 + 2/3 ) 8 × 4/5 + 8 × 11/5
7 × 5/49 + 3/14 31 × 5/6 – 5/6 5/9 × 18 – 14 × 2/7
9/7 - ( 2/7 – 10/21 ) 4/5 × 25/16 + 2/3 × 3/4 14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24 3 × 2/9 + 1/3 5/7 × 3/25 + 3/7

3/14 ×× 2/3 + 1/6 1/5 × 2/3 + 5/6 9/22 + 1/11 ÷ 1/2

5/3 × 11/5 + 4/3 45 × 2/3 + 1/3 × 15 7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3 8/7 × 21/16 + 1/2 101 × 1/5 – 1/5 × 21
1.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有42千米.已知货车和客车的速度比是5:7,甲、乙两地相距多少千米?
3小时客车比货车多行42千米,每小时客车比货车多行42/3=14千米,所以客车速度为14/(7-5)*7=49千米/小时,甲乙相距:49×3×2=245千米
2.一筐苹果卖掉5分之1后,又卖掉8千克,这时剩下的与卖出的比是2:1.这筐苹果原来有多少千克?
两次一共卖出了1/(2+1)=1/3,所以第二次卖掉了1/3-1/5=1/15,所以这筐苹果原来有15/(1/8)=120千克
3.一辆快车和一辆慢车分别从南京和扬州两地同时相向而行,经过2小时在离中点3千米处相遇.已知快车平均每小时行75千米,慢车平均每小时行多少千米?
相遇时快车比慢车多行3×2=6千米,所以每小时快车比慢车多行6/2=3千米,所以慢车平均每小时行75-3=72千米
4.购买同款汽车,张叔叔分期付款要多付百分之7,李叔叔用现金一次性付款享受九五折优惠,张叔叔比李叔叔多付7200元,这辆汽车原价多少万元?
7200/(1+7%-95%)=60000元
5.甲数的3分之2与乙数的5分之3相等,甲数与乙数之和为38,甲数是(18 ).
甲数和乙数的比为(3/5)/(2/3)=9/10,甲数为:38*9/(10+9)=18
6.一个长是4分米的圆柱体,把它截成8个小圆柱体所得表面积的总和,比截成5个小圆柱体所得表面积的总和多180平方厘米,原来圆柱体的体积是(1200 )立方厘米.
截成8个小圆柱,表面积多了14个底面积,截成5个小圆柱,表面积多了8个底面积,所以底面积为:180/(14-8)=30平方厘米,原来圆柱体的体积是:30×4×10=1200立方厘米
7.一个长方体的高减少2厘米后,表面积减少了48平方厘米,成为一个正方体.长方体的体积是(288)立方厘米.
表面积减少的部分是高减少2厘米所减少的侧面积,侧面积=底面周长×高
所以底面周长为48/2=24厘米,底面边长为:24/4=6厘米,长方体的体积为:6×6×(6+2)=288立方厘米
(1/15+3/49)*15-45/49
=1/15*15+3/49*15-45/49
=1+45/49-45/49
=1
8.生产一批零件,原计划每天生产80个,可以再预定时间内完成.实际每天生产100个,结果提前6天完成.这批零件有多少个?
每天生产100个,按计划天数生产,可以多生产100×6=600个,每天多生产100-80=20个,所以计划天数为600/20=30天
所以这批零件有80×30=2400个
9.体育室买来75个球,其中篮球是足球的2倍,排球比足球多3个.这三种球各有多少个?
足球有:(75-3)/(2+1+1)=18个,篮球有18×2=36个,排球有18+3=21个
10.一个长方体木块,表面积是46.9平方分米,底面积是16.25平方分米,底面周长是18分米.这个长方体的体积是多少立方分米?
长方体的表面积=侧面积+底面积×2
侧面积=底面周长×高
记住这两个公式@!@@
长方体的高:(46.9-16.25×2)/18=0.8分米
长方体的体积:16.25×0.8=13立方分米
11.同学们参加数学奥林匹克竞赛,参加竞赛的男生比总数的20分之11还多100人,女生参加的人数是男生的4分之1,参加这次竞赛的共有多少人?
11/20 *1/4=11/80
100*1/4=25
即女生参加的人数比总数的11/80多25人
所以参加竞赛的共有:(100+25)/(1-11/20-11/80)=400人 12.“六一”歌手大奖赛有407人参加,女歌手未获奖人数占女歌手总数的9分之1,男歌手16人未获奖,而获奖男女歌手人数一样多,问:参赛的男歌手共几人?
女歌手有:(407-16)/(1+8/9)=207人
男歌手有:407-207=200人
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
给徒弟加工的零件数加上10*4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4.这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份.
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
这个题目和第8题比较近似.但比第8题复杂些!
大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上.
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了.
说明小轿车到达中点的时候,大轿车已经又出发了.那么就是在后面一半的路追上的.
既然后来两人都没有休息,小轿车又比大轿车早到4分钟.
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上.
所以此时的时刻是11时05分.
13. 一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;
因为1/(17/140)=8(小时).1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:
(1/35)/(1/14)=2/5小时=0.4小时.
所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时.
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;
黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元.
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分.
因为船的顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2.
这条船从上游港口到下游某地的时间为:
3小时30分*1/(1+2)=1小时10分=7/6小时. (7/6小时=70分)
从上游港口到下游某地的路程为:
80*7/6=280/3千米.(80×70=5600)
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
由于两个粮仓容量之和是相同的,总共的面粉43+37=80吨也没有发生变化.
所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满.
说明乙粮仓的1/2和甲粮仓的2/3的容量是相同的.
所以,乙仓库的容量是甲仓库的2/3÷1/2=4/3
所以,甲仓库的容量是80÷(1+4/3÷2)=48吨
乙仓库的容量是48×4/3=64吨
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
根据题意得:
甲数=乙数×商+2;乙数=丙数×商+2
甲、乙、丙三个数都是整数,还有丙数大于2.
商是大于0的整数,如果商是0,那么甲数和乙数都是2,就不符合要求.
所以,必然存在,甲数>乙数>丙数,由于丙数>2,所以乙数大于商的2倍.
因为甲数+乙数=乙数×(商+1)+2=478
因为476=1×476=2×238=4×119=7×68=14×34=17×28,所以“商+1”<17
当商=1时,甲数是240,乙数是238,丙数是236,和就是714
当商=3时,甲数是359,乙数是119,丙数是39,和就是517
当商=6时,甲数是410,乙数是68,丙数是11,和就是489
当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求
当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求
所以,符合要求的结果是.714、517、489三组.
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
这个问题很难理解,仔细看看哦.
原定时间是1÷10%×(1-10%)=9小时
如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2
因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3
所以甲乙两第之间的距离是180÷(1-2/3)=540千米
山岫老师的解答如下:
第18题我是这样想的:原速度:减速度=10:9,
所以减时间:原时间=10:9,
所以减时间为:1/(1-9/10)=10小时;原时间为9小时;
原速度:加速度=5:6,原时间:加时间=6:5,
行驶完180千米后,原时间=1/(1/6)=6小时,
所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,
所以两地之间的距离为60*9=540千米
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
利用平方数解答题目:
根据题意,方阵人数要满足60×3<方阵人数≤60×4,并且满足70×2<方阵人数≤70×3
说明总人数在60×3=180和70×3=210之间
这之间的平方数只有14×14=196人.
所以组成这个方阵的人数应为196人.
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
我用份数来
甲车床加工方形零件4份,圆形零件4×2=8份
乙车床加工方形零件3份,圆形零件3×3=9份
丙车床加工方形零件3份,圆形零件3×4=12份
圆形零件共8+9+12=29份,每份是58÷29=2份
方形零件有2×(3+3+4)=20个
所以,共加工零件20+58=78个
(170+10*4)/7=30个
30*4-40=80个
或者:
把师傅加工的零件数减去10*3=30个,师傅的1/3就正好等于徒弟的1/4.
(170-10*3)/(3+4)*4=80个
一、分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
六年级数学应用题2
二、比的应用题
1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?
4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?
7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?
8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

六年级数学应用题3
三、百分数的应用题
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税.爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元.爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨.
7、一本200页的书,读了20%,还剩下( )页没读.甲数的40%与乙数的50%相等,甲数是120,乙数是( ).
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
10、 小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨.

六年级数学应用题4
四、圆的应用题
1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积.
2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?
3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度.求扇形的面积.
4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长.
5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?
6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?
7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?
9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?
六年级数学应用题5
1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客.一共有多少名游客?多少名救生员?
2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿.剩下的按2∶1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?
3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?
4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?
5、一个三角形的三个内角度数的比是1∶2∶3,这个三角形中最大的角是多少度?这个三角形是什么三角形?
6、修路队要修一条长432米的公路,已经修好了全长的 ,剩余的任务按5∶4分给甲、乙两个修路队.两个修路队各要修多少米?
7、在"学雷锋"活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3∶5.五、六年级同学各做好事多少件?
8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4∶5,客车和货车每小时各行多少千米?
9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?
10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)
11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?
12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?
13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计.)如果每隔2米装一根木桩,大约要装多少根木桩?
14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?
15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪.草坪的占地面积是多少?
16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路.这条小路的面积多少?
17、小明购买了5角和8角的邮票共16张,共用去10.7元.小明买这两种邮票各多少张?
18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人.女院士占院士人数的百分之几?
19、甲、乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完.乙队挖了多少天?
20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转.求这个数.
六年级数学应用题6
1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?
2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?
3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?
4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?
5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?
6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?
7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?
8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?
9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?
10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵.女生植树多少棵?
11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?
12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?
13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?
14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?
15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?
16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8.两天共看了多少页?
17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?
18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?
19、小伟和小英给希望工程捐款钱数的比是2 :5.小英捐了35元,小伟捐了多少元?
20、电视机厂今年计划比去年增产2/5.去年生产电视机1/5万台,今年计划增产多少万台?

❽ 帮我做数学题

太多了,才20分...我帮你解3道吧
第一道:由题意得,总共得纸得厚度为0.5*(20-6)/0.04=175,那就内代表有175层纸包容起来得,最外层得长度为2π r=20π ,因为直径为20,半径为10。第二层,由於每层纸都有0.04得厚度,但是题目只让你求约多少米,所以明显这里可以忽视,也当它是20π ,所以一共有175层,每层得长度大约为20π ,总共就是175*20π cm
第二道:圆柱侧面积公式=2π rh,r为半径,h为高,所以2π rh=942,π rh=471,体积=底面积*高=π rrh=2355,因为π rh=471,代入体积公式得半径为r=5,所以底面积=π rr=25π
最后一题:圆锥的体积公式(1/3)rrπ h=120π ,结冰后,体积变大10%,后充满整个圆柱,所以圆柱的体积=120π *1。1=132π ,圆柱的体积=底面积*高,又因为圆柱底面半径为4,所以底面积=16π ,所以高h=132π /16π =33/4
分给我吧,我三道题都打了那麼多,全部打了,估计你也没心情看对吧,呵呵,请问这是甚麼学科啊?数学嘛?

热点内容
南位小学 发布:2021-03-17 07:04:39 浏览:344
语文校本课程开发案例 发布:2021-03-17 07:04:26 浏览:380
微博问答围观不了 发布:2021-03-17 07:04:25 浏览:937
高一地理难吗 发布:2021-03-17 07:04:25 浏览:281
显卡性能看什么 发布:2021-03-17 07:03:43 浏览:919
学习医学知识 发布:2021-03-17 07:03:39 浏览:220
地理少女 发布:2021-03-17 07:03:35 浏览:143
命题作文高中 发布:2021-03-17 07:03:33 浏览:855
金东方面试题 发布:2021-03-17 07:03:22 浏览:14
excel如何搜索 发布:2021-03-17 07:03:18 浏览:266